

HYOSUNG ADVANCED MATERIALS

www.hvosungadvancedmaterials.com

119 Mapo-daero, Mapo-gu, Seoul, Korea 04144 Tel:+82-2-707-7721 / Fax:+82-2-707-4319

Carbon Fiber Sales Directory

		,											
Territory	Name	Position	Location	Email									
	Ishma Pinckney	Manager	Charlotte, NC	ishma.pinckney@us.hyosung.com									
	Minho Choi	Manager	South Korea	mh.choi@hyosung.com									
	Eric Son	Sales Manager	South Korea	ssj0511@hyosung.com									
Europe	Young Kim	Sales Manager	South Korea	young.kim@hyosung.com									
Europe	Patrick Lee	Sales Manager	South Korea	donggon.lee@hyosung.com									
	Sam Jeong	General Manager	Shanghai, China	blue3@hyosung.com									
China	Roy Yu	Manager	South Korea	roy.yu@hyosung.com									
	Grace Lim	Sales Manager	South Korea	alloah@hyosung.com									
Taiwan	JT Ban	Sales Manager	South Korea	jtban@hyosung.com									
Korea	William Chae	Manager	South Korea	williamchae@hyosung.com									
Kolea	JT Ban	Sales Manager	South Korea	jtban@hyosung.com									
ASEAN/India	Douglas Kam	Sales Manager	South Korea	kamds777@hyosung.com									
India	Ved Prakash Pandey	Sales Manager	Harvana India	vedparkash@hvosung.com									

Hyosung Advanced Materials Corporation

Hyosung Advanced Materials began as a business unit dealing with industrial yarn as part of Dongyang Nylon and Dongyang Polyester, the founding fathers of Hyosung Group, and has continued to grow to become a leading global material vendor offering some of the world's finest products based on proprietary technologies and non-stop innovation.

Our products including high strength industrial yam and fabric and materials for steel wire are widely used in a variety of industry sectors including automotive, civil engineering and architecture, agriculture and mitogistics. We maintain our competitive edge by developing high caliber global products including the grown for automobile seat belts and fabric for airbags, and developing and commercializing new materials that will help us grow sustainably.

Our goal is to transform ourselves from a vendor of products featuring world-class quality and performance to a solution provider that prioritizes user safety and comfort.

Hyosung's Global NO.1 Businesses

We truly appreciate your encouragement and support for us and pledge to channel our resources to R&D efforts and innovation to repay our thanks with solutions that can help improve your quality of life. Please keep watching us grow into a more reputable company not only among our partners and customers but also throughout the global community by fuffilling our social responsibility based on moral integrity.

Hyosung Carbon Fiber - History

2008~	2011~	2013~	~2028
Development Stage	Marketing Stage	Commercial Production Stage	Expansion Stage
2008 Started Carbon Fiber Development 2010 Successfully Developed H2550 Precursor & Carbon 2011 Approved Corporate Investment Plans for the Commercial Production Line	2011 Started Global Product Marketing 2012 Successfulty Developed H3055 Precursor & Carbon	2013 Established Commercial Plant in Jeonju, Korea (EF Capa.: 2,000MTy) The 1st Korean company to produce High Performance Carbon Fiber & PAN Precursor MTF 16949: 2016 Cuality Management System certified June 2019. ASS1000 Aerospace Quality Management System certified June 2021,	2020 Carbon Fiber Capa.: 4,000 MT/y Precursor Capa.: 8,000 MT/y -2022 Carbon Fiber Capa.: 6,500 MT/y Precursor Capa.: 13,000 MT/y Precursor Capa.: 13,000 MT/y -2023 Carbon Fiber Capa.: 9,000 MT/y -2023 Carbon Fiber Capa.: 20,000 MT/y -2026 Carbon Fiber Capa.: 24,000 MT/y Precursor Capa.: 48,000 MT/y

Application

Factory Site

CARBON FIBER FOR A BETTER WORLD

Hyosung Carbon Fiber - The Number 1 High Strength Carbon Fiber in the World

Strength of Hyosung Carbon Fiber

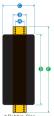
- ① Produces own precursor Hyosung's own Technology ② Fully controlled continuous process from raw material to carbon fiber
- ③ Technology development capability
- ① Customer technical support
 - (5) High Strength carbon fiber
 (6) High Translation of fiber properties

Typical Tow Properties

		Number of	Tensile:	Tensile Strength		Tensile Modulus		Density	Filament	Yield	Sizing	
Fiber Type		Filaments	SI Units (Mpa)	US Unit (Ksi)	SI Unit (GPa)	US Unit (Msi)	Elongation (%)	(g/cm3)	Diameter (µm)	(g/km)	Level (%)	Remark
	H2550	6,000	5,516	800	250	36.3	2.2	1.80	7.0	400	1.0	
High Strength,		12,000	5,516	800	250	36.3	2.2	1.80	7.0	800	1.0	
Standard Modulus		12,000	5,516	800	250	36.3	2.2	1.80	7.0	800	Unsized	Thermoplastic
		24,000	5,516	800	250	36.3	2.2	1.80	7.0	1,650	1.0	
High Strength,	H3055	12,000	5,516	800	290	42.1	1.9	1.80	6.6	725	1.0	
Intermediate Modulus	H3060	24,000	6,000	870	290	42.1	2.1	1.80	5.5	1,040	1.0	
Ultra High Strength, Intermediate Modulus	H3065	12,000	6,400	928	290	42.1	2.2	1.80	5.0	510	1.0	

Typical Composite Properties

FiberType		H2550						H3055		H3060		H3065		
		6K		12K		24K		12K		24K		12K		Test Method
		SI Units	US Units	SI Units	US Units	SI Units	US Units	SIUnits	US Units	SI Units	US Units	SI Units	US Units	
	0" Tensile Strength	2,950 MPa	428 Ksi	2,950 MPa	428 Ksi	2,950 MPa	428 Ksi	2,950 MPa	428 Ksi	3,000 MPa	435 Ksi	3,100 MPa	449 Ksi	ASTM D3039
Properties	0* Tensile Modulus	140 GPa	20.3 Msi	140 GPa	20.3 Msi	140 GPa	20.3 Msi	155 GPa	22.5 Msi	150 GPa	21.7 Msi	155 GPa	22.5 Msi	ASTM D3039
	0* Tensile Strain	2.00 %		2.00%		2.00%		1.80 %		1.80 %		2.00 %		ASTM D3039
Compressive Properties	0* Compressive Strength	1,450 MPa	210 Ksi	1,450 MPa	210 Ksi	1,450 MPa	210 Ksi	1,500 MPa	217 Ksi	1,500 MPa	217 Ksi	1,540 MPa	223 Ksi	ASTM D3410
Flexural	0° Flexural Strength	1,800 MPa	261 Ksi	1,800 MPa	261 Ksi	1,800 MPa	261 Ksi	1,800 MPa	261 Ksi	1,710 MPa	248 Ksi	1,640 MPa	237 Ksi	ASTM D790
	0° Flexural Modulus	125 GPa	18.1 Msi	125 GPa	18.1 Msi	125 GPa	18.1 Msi	150 GPa	21.8 Msi	159 GPa	23.1 Msi	145 GPa	21.0 Msi	ASTM D790
ILSS	Strength	90 MPa	13.1 Ksi	90 MPa	13.1 Ksi	90 MPa	13.1 Ksi	90 MPa	13.1 Ksi	90 MPa	13.0 Ksi	90 MPa	13.0 Ksi	ASTM D2344


The above properties do not constitute any warranty or guarantees.

These values are for material selection purposes only.

Standard Packaging

Elber Tone		Number of	Spool Net		Bobb	in Size	(mm)		Spool Per	Case Net	Pallet Net	
Fiber Type		Filaments	Weight (kg)	A	B	0	0	(3)	Case (ea)	Weight (kg)	Weight (kg	
	H2550	6000	1.0	76	84	110	250	280	12	12	432	
			2.0	76	84	123	250	280	8	16	576	
		12000	2.0	76	84	125	250	280	8	16	576	
High Strength,			4.0	76	84	154	250	280	6	24	864	
Standard Modulus			6.0	76	84	180	250	280	4	24	864	
		24000	4.0	76	84	165	250	280	6	24	864	
			6.0	76	84	195	250	280	4	24	864	
			*8.0	76	84	220	250	280	96	768	768	
High Strength,	H3055	LIGORE	10000	2.0	76	84	131	250	280	8	16	576
Intermediate Modulus		12000	4.0	76	84	155	250	280	6	24	864	

